

Explore Image Deblurring via Blur Kernel Space

Phong Tran¹

Anh Tran^{1, 2}

Quynh Phung¹

¹VinAl Research, Hanoi, Vietnam, ²VinUniversity, Hanoi, Vietnam, ³Stony Brook University, Stony Brook, NY 11790, USA

Image Deblurring

Image Deblurring

N: noise

MAP Framework: $x, k = \underset{x,k}{\operatorname{argmax}} \mathbb{P}(y|x,k)\mathbb{P}(x)\mathbb{P}(k)$

Deep Learning Models

Deep Learning Models - Challenges

- Generalize MAP-based method
- Leverage neural networks

Our Work

Our Work

Find F and G

(い)

Find F and G Blind Deblurring

Find F and G Blind Deblurring Blur Synthesis

Kernel Encoding

- F and G are implemented by two neural networks.
- For (x, y) ~ P_{data}(x, y). F and G are jointly optimized by minimizing the objective function:

 $\mathbb{E}_{x,y}\left[\rho(y,\mathcal{F}(x,\mathcal{G}(x,y)))\right]$

Kernel Encoding

- F and G are implemented by two neural networks.
- For (x, y) ~ P_{data}(x, y). F and G are jointly optimized by minimizing the objective function:

• X and k are alternatively optimized by minimizing:

$$\sum_{i=1}^{n} \rho(y_i, \mathcal{F}(x_i, \mathcal{G}(x_i, y_i)))$$

Algorithm 1 Blind image deblurring

Input: blurry image y

Output: sharp image x

- 1: Sample $z_x \sim \mathcal{N}(0, I)$
- 2: Randomly initialize θ_x of $G^x_{\theta_x}$
- 3: while θ_x has not converged **do**
- 4: Sample $z_k \sim \mathcal{N}(0, I)$
- 5: Randomly initialize θ_k of $G_{\theta_k}^k$
- 6: while θ_k has not converged **do**
- 7: $g_k \leftarrow \partial \mathcal{L}(\theta_x, \theta_k) / \partial \theta_k$
- 8: $\theta_k \leftarrow \theta_k + \alpha * ADAM(\theta_k, g_k)$
- 9: end while

10:
$$g_x \leftarrow \partial \mathcal{L}(\theta_x, \theta_k) / \partial \theta_x$$

11:
$$\theta_x \leftarrow \theta_x + \alpha * ADAM(\theta_x, g_x)$$

12: end while

13: $x = G_{\theta_x}(z_x)$

• X and k are alternatively optimized by minimizing:

$$\sum_{i=1}^{n} \rho(y_i, \mathcal{F}(x_i, \mathcal{G}(x_i, y_i)))$$

fix k, optimize x

Algorithm 1 Blind image deblurring **Input:** blurry image y **Output:** sharp image x 1: Sample $z_x \sim \mathcal{N}(0, I)$ 2: Randomly initialize θ_x of $G_{\theta_x}^x$ 3: while θ_x has not converged **do** Sample $z_k \sim \mathcal{N}(0, I)$ 4: 5: Randomly initialize θ_k of $G_{\theta_k}^k$ while θ_k has not converged **do** 6: 7: $g_k \leftarrow \partial \mathcal{L}(\theta_x, \theta_k) / \partial \theta_k$ 8: $\theta_k \leftarrow \theta_k + \alpha * ADAM(\theta_k, g_k)$ end while 9: 10: $g_x \leftarrow \partial \mathcal{L}(\theta_x, \theta_k) / \partial \theta_x$ 11: $\theta_x \leftarrow \theta_x + \alpha * ADAM(\theta_x, g_x)$ 12: end while 13: $x = G_{\theta_x}(z_x)$

m

$$\sum_{i=1}^{n} \rho(y_i, \mathcal{F}(x_i, \mathcal{G}(x_i, y_i)))$$

Algorithm 1 Blind image deblurring **Input:** blurry image y **Output:** sharp image x 1: Sample $z_x \sim \mathcal{N}(0, I)$ 2: Randomly initialize θ_x of $G_{\theta_x}^x$ 3: while θ_x has not converged **do** Sample $z_k \sim \mathcal{N}(0, I)$ 4: 5: Randomly initialize θ_k of $G_{\theta_k}^k$ 6: **while** θ_k has not converged **do** 7: $g_k \leftarrow \partial \mathcal{L}(\theta_x, \theta_k) / \partial \theta_k$ 8: $\theta_k \leftarrow \theta_k + \alpha * ADAM(\theta_k, g_k)$ fix x, optimize k7: $g_k \leftarrow \partial \mathcal{L}(\theta_x, \theta_k) / \partial \theta_k$ 8: $\theta_k \leftarrow \theta_k + \alpha * ADAM(\theta_k, g_k)$ 9:end while10: $g_x \leftarrow \partial \mathcal{L}(\theta_x, \theta_k) / \partial \theta_x$ 11: $\theta_x \leftarrow \theta_x + \alpha * ADAM(\theta_x, g_x)$ 12: end while 13: $x = G_{\theta_x}(z_x)$


```
Algorithm 1 Blind image deblurring
  Input: blurry image y
 Output: sharp image x
   1: Sample z_x \sim \mathcal{N}(0, I)
   2: Randomly initialize \theta_x of G_{\theta_x}^x
   3: while \theta_x has not converged do
            Sample z_k \sim \mathcal{N}(0, I)
   5: Randomly initialize \theta_k of G_{\theta_k}^k
   6: while \theta_k has not converged do
7: g_k \leftarrow \partial \mathcal{L}(\theta_x, \theta_k) / \partial \theta_k

8: \theta_k \leftarrow \theta_k + \alpha * ADAM(\theta_k, g_k)
  13: x = G_{\theta_x}(z_x)
```


Domain-specific Image Deblurring

$$z^*, k^* = \underset{z,k}{\operatorname{arg\,max}} \rho \left(\mathcal{F}(G_{style}(z), k), y) \right) + \underset{x}{\operatorname{R}} R_z(z) + R_k(k)$$

Regularization term

Blur Synthesis

(x₁, y₁)

Blur Synthesis

(x₁, y₁)

(x₂, y₂)

	kernel 1	kernel 2	kernel 3	kernel 4
PSNR (db)	49.48	51.93	52.06	53.74
	kernel 5	kernel 6	kernel 7	kernel 8
PSNR (db)	49.91	49.49	51.43	50.38

Blur transferring performance on Levin dataset

	Da	Dataset	
Training data	REDS	GOPRO	
Original	30.70	30.20	
Blur-swapped	29.43	28.49	

SRN performance when training on blurswapped dataset

Experimental Results – Generic Image Deblurring

Experimental Results – Generic Image Deblurring

Experimental Results – Blind Image Deblurring

(い)

Blur

SelfDeblur

DeblurGANv2 imgaug

DeblurGANv2 REDS

SRN imgaug

Ours

Experimental Results – Blind Image Deblurring

Experimental Results – Blur Synthesis

Source sharp

Source blur

Synthesized blur

Experimental Results – Blur Synthesis

Source sharp

Source blur

Synthesized blur

- We have proposed a method to encode the blur kernel space of a deblurring dataset.
- We have proposed some applications of the blur kernel space.

Code

https://github.com/VinAIResearch/blu r-kernel-space-exploring Paper

https://www.vinai.io/publicationposts/explore-image-deblurring-viaencoded-blur-kernel-space/