Explore Image Deblurring via Blur Kernel Space

Phong Tran1
Anh Tran1,2
Quynh Phung1
Minh Hoai1,3

1VinAI Research, Hanoi, Vietnam, 2VinUniversity, Hanoi, Vietnam, 3Stony Brook University, Stony Brook, NY 11790, USA

https://github.com/VinAIResearch/blur-kernel-space-exploring
Image Deblurring

Moving object

Camera shaking
Image Deblurring

Deblurring method
MAP-based Methods

\[y = x \ast k + n \]

- **Y**: blur image
- **X**: sharp image
- **K**: blur kernel
- **N**: noise

Linear and uniform
MAP-based Methods

MAP Framework:

\[x, k = \operatorname{argmax}_{x, k} \frac{P(y|x, k)P(x)}{P(k)} \]
MAP-based Methods

- Linear and uniform Gradient-based penalty, dark channels, ...

- Sparsity, Spectral properties, ...
MAP-based Methods

- Gradient-based penalty, dark channels, ...
- Does not hold in general
- Linear and uniform kernel
- Sparsity, Spectral properties, ...
- Linear and uniform
Deep Learning Models

CNN
Deep Learning Models - Challenges

Kernel overfitting

CNN
Our Work

- Generalize MAP-based method
- Leverage neural networks
Our Work

Assumptions:

\[y = \mathcal{F}(x, k) \]

\[\mathcal{F}(\cdot, k) \text{ : Blur operator parameterized by } k \]
Our Work

Assumptions:

\[y = \mathcal{F}(x, k) \]

- \(\mathcal{F}(\cdot, k) \): Blur operator parameterized by \(k \)
- \(\mathcal{G}(x, y) \): Extract blur kernel \(k \) from \((x, y) \)
Our Work

Find F and G
Our Work

Find F and G

Blind Deblurring
Our Work

Find F and G Blind Deblurring Blur Synthesis
Kernel Encoding

- F and G are implemented by two neural networks.
- For \((x, y) \sim P_{data}(x, y)\). F and G are jointly optimized by minimizing the objective function:

\[
\mathbb{E}_{x,y} \left[\rho(y, F(x, G(x, y))) \right]
\]
Kernel Encoding

- F and G are implemented by two neural networks.
- For $(x, y) \sim P_{\text{data}}(x, y)$. F and G are jointly optimized by minimizing the objective function:

$$\mathbb{E}_{x,y} [\rho(y, \mathcal{F}(x, \mathcal{G}(x, y)))]$$

Charbonnier Loss
Generic Image Deblurring

- X and k are alternatively optimized by minimizing:

\[
\sum_{i=1}^{n} \rho(y_i, F(x_i, G(x_i, y_i)))
\]

Charbonnier Loss

Recon blurry image
Generic Image Deblurring

- X and k are alternatively optimized by minimizing:
 \[\sum_{i=1}^{n} \rho(y_i, F(x_i, G(x_i, y_i))) \]

Algorithm 1 Blind image deblurring

Input: blurry image \(y \)

Output: sharp image \(x \)

1: Sample \(z_x \sim \mathcal{N}(0, I) \)
2: Randomly initialize \(\theta_x \) of \(G^x_{\theta_x} \)
3: while \(\theta_x \) has not converged do
4: Sample \(z_k \sim \mathcal{N}(0, I) \)
5: Randomly initialize \(\theta_k \) of \(G^k_{\theta_k} \)
6: while \(\theta_k \) has not converged do
7: \(g_k \leftarrow \partial L(\theta_x, \theta_k) / \partial \theta_k \)
8: \(\theta_k \leftarrow \theta_k + \alpha \ast \text{ADAM}(\theta_k, g_k) \)
9: end while
10: \(g_x \leftarrow \partial L(\theta_x, \theta_k) / \partial \theta_x \)
11: \(\theta_x \leftarrow \theta_x + \alpha \ast \text{ADAM}(\theta_x, g_x) \)
12: end while
13: \(x = G^x_{\theta_x}(z_x) \)
Generic Image Deblurring

• X and k are alternatively optimized by minimizing:
\[\sum_{i=1}^{n} \rho(y_i, F(x_i, G(x_i, y_i))) \]

Algorithm 1: Blind image deblurring

Input: blurry image y

Output: sharp image x

1: Sample \(z_x \sim \mathcal{N}(0, I) \)
2: Randomly initialize \(\theta_x \) of \(G^{x}_{\theta_x} \)
3: while \(\theta_x \) has not converged do
 4: Sample \(z_k \sim \mathcal{N}(0, I) \)
 5: Randomly initialize \(\theta_k \) of \(G^{k}_{\theta_k} \)
 6: while \(\theta_k \) has not converged do
 7: \[g_k \leftarrow \frac{\partial \mathcal{L}(\theta_x, \theta_k)}{\partial \theta_k} \]
 8: \[\theta_k \leftarrow \theta_k + \alpha \times \text{ADAM}(\theta_k, g_k) \]
 9: end while
10: \[g_x \leftarrow \frac{\partial \mathcal{L}(\theta_x, \theta_k)}{\partial \theta_x} \]
11: \[\theta_x \leftarrow \theta_x + \alpha \times \text{ADAM}(\theta_x, g_x) \]
12: end while
13: \(x = G_{\theta_x}(z_x) \)
Generic Image Deblurring

• X and k are alternatively optimized by minimizing:

\[
\sum_{i=1}^{n} \rho(y_i, F(x_i, G(x_i, y_i)))
\]

Algorithm 1 Blind image deblurring

Input: blurry image \(y\)

Output: sharp image \(x\)

1: Sample \(z_x \sim \mathcal{N}(0, I)\)
2: Randomly initialize \(\theta_x\) of \(G^{x}_{\theta_x}\)
3: while \(\theta_x\) has not converged do
4: Sample \(z_k \sim \mathcal{N}(0, I)\)
5: Randomly initialize \(\theta_k\) of \(G^{k}_{\theta_k}\)
6: while \(\theta_k\) has not converged do
7: \(g_k \leftarrow \frac{\partial \mathcal{L}(\theta_x, \theta_k)}{\partial \theta_k}\)
8: \(\theta_k \leftarrow \theta_k + \alpha \ast ADAM(\theta_k, g_k)\)
9: end while
10: \(g_x \leftarrow \frac{\partial \mathcal{L}(\theta_x, \theta_k)}{\partial \theta_x}\)
11: \(\theta_x \leftarrow \theta_x + \alpha \ast ADAM(\theta_x, g_x)\)
12: end while
13: \(x = G_{\theta_x}(z_x)\)
• X and k are alternatively optimized by minimizing:
\[\rho(y, F(x, k)) + \lambda \| k \|_2 + \gamma (g_u^2(x) + g_v^2(x))^{\alpha/2} \]

\[\text{Algorithm 1 Blind image deblurring} \]

\[\text{Input:} \ \text{blurry image} \ y \]
\[\text{Output:} \ \text{sharp image} \ x \]

1: Sample \(z_x \sim \mathcal{N}(0, I) \)
2: Randomly initialize \(\theta_x \) of \(G^{x}_{\theta_x} \)
3: while \(\theta_x \) has not converged do
4: \hspace{1em} Sample \(z_k \sim \mathcal{N}(0, I) \)
5: \hspace{1em} Randomly initialize \(\theta_k \) of \(G^{k}_{\theta_k} \)
6: \hspace{1em} while \(\theta_k \) has not converged do
7: \hspace{2em} \(g_k \leftarrow \partial \mathcal{L}(\theta_x, \theta_k) / \partial \theta_k \)
8: \hspace{2em} \(\theta_k \leftarrow \theta_k + \alpha \ast ADAM(\theta_k, g_k) \)
9: \hspace{1em} end while
10: \(g_x \leftarrow \partial \mathcal{L}(\theta_x, \theta_k) / \partial \theta_x \)
11: \(\theta_x \leftarrow \theta_x + \alpha \ast ADAM(\theta_x, g_x) \)
12: end while
13: \(x = G^{x}_{\theta_x}(z_x) \)
Generic Image Deblurring

- Deep Image Prior:
 - Replace x by $G_{\theta_x}^y$
 - Replace k by $G_{\theta_k}^k$

- x and k are alternatively optimized by minimizing:
 \[
 \rho(y, F(x, k)) + \lambda \|k\|_2 + \gamma(g_u^2(x) + g_v^2(x))^{\alpha/2}
 \]

Regularization term

Algorithm 1 Blind image deblurring

Input: blurry image y

Output: sharp image x

1: Sample $z_x \sim \mathcal{N}(0, I)$

2: Randomly initialize θ_x of $G_{\theta_x}^y$

3: while θ_x has not converged do

4: Sample $z_k \sim \mathcal{N}(0, I)$

5: Randomly initialize θ_k of $G_{\theta_k}^k$

6: while θ_k has not converged do

7: $g_k \leftarrow \partial \mathcal{L}(\theta_x, \theta_k)/\partial \theta_k$

8: $\theta_k \leftarrow \theta_k + \alpha * ADAM(\theta_k, g_k)$

9: end while

10: $g_x \leftarrow \partial \mathcal{L}(\theta_x, \theta_k)/\partial \theta_x$

11: $\theta_x \leftarrow \theta_x + \alpha * ADAM(\theta_x, g_x)$

12: end while

13: $x = G_{\theta_x}(z_x)$
Domain-specific Image Deblurring

\[z^*, k^* = \arg \max_{z,k} \rho(\mathcal{F}(G_{style}(z), k), y) + R_z(z) + R_k(k) \]

Pre-trained StyleGAN
Blur Synthesis

\[G(x_1, y_1) \]

\((x_1, y_1)\)
Blur Synthesis

\[G(x_1, y_1) \]

\[F(x_2, k_1) \]

\((x_1, y_1) \)
Experimental Results – Kernel Encoding

Kernel 8

\((x_1, y_1) \)

\((x_2, y_2) \)
Experimental Results – Kernel Encoding

\[G(x_1, y_1) \]

\[F(x_2, k_1) \]

\[x_2 \]

\[y'_2 \]
Experimental Results – Kernel Encoding

$$G(x_1, y_1)$$

$$F(x_2, k_1)$$

PSNR

$$x_2$$

$$y'_2$$

$$y_2$$
Experimental Results – Kernel Encoding

Blur transferring performance on Levin dataset

<table>
<thead>
<tr>
<th>PSNR (db)</th>
<th>kernel 1</th>
<th>kernel 2</th>
<th>kernel 3</th>
<th>kernel 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>49.48</td>
<td>51.93</td>
<td>52.06</td>
<td>53.74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PSNR (db)</th>
<th>kernel 5</th>
<th>kernel 6</th>
<th>kernel 7</th>
<th>kernel 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>49.91</td>
<td>49.49</td>
<td>51.43</td>
<td>50.38</td>
</tr>
</tbody>
</table>
Experimental Results – Kernel Encoding

SRN performance when training on blur-swapped dataset

<table>
<thead>
<tr>
<th>Training data</th>
<th>Dataset</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REDS</td>
<td>GOPRO</td>
</tr>
<tr>
<td>Original</td>
<td>30.70</td>
<td>30.20</td>
</tr>
<tr>
<td>Blur-swapped</td>
<td>29.43</td>
<td>28.49</td>
</tr>
</tbody>
</table>

SRN performance when training on blur-swapped dataset
Experimental Results – Generic Image Deblurring

Blur
SRN
Ours
Sharp
SelfDeblur
DeblurGANv2

–
Experimental Results – Generic Image Deblurring
Experimental Results – Blind Image Deblurring

Blur

SelfDeblur

DeblurGANv2
 imgaug

DeblurGANv2
 REDS

SRN imgaug

SRN REDS

Ours
Experimental Results – Blind Image Deblurring

<table>
<thead>
<tr>
<th>Blur</th>
<th>SelfDeblur</th>
<th>DeblurGANv2</th>
<th>DeblurGANv2</th>
<th>SRN imaug</th>
<th>SRN REDS</th>
<th>ours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Results – Blur Synthesis

Source sharp

Source blur

Synthesized blur
Experimental Results – Blur Synthesis
Summary

- We have proposed a method to encode the blur kernel space of a deblurring dataset.
- We have proposed some applications of the blur kernel space.

Code

https://github.com/VinAIResearch/blur-kernel-space-exploring

Paper