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MAP-based Methods

Linear and uniform

y=Xx*k+n
Y: blur image
X: sharp image
K: blur kernel
N: noise




MAP-based Methods

Linear and uniform

MAP Framework:

x, k = argmax P(y|z, k)P(x)P(k)
x,k
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Deep Learning Models
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Deep Learning Models - Challenges

Kernel
overfitting




Our Work

- Generalize MAP-based method
- Leverage neural networks



Our Work

Assumptions: | U = .F(m, k‘)

F(-, k) :Blur operator parameterized by k



Our Work

Assumptions: | U = .F(m, k)

F (-, k) :Bluroperator parameterized by k
G(xz,y) :Extract blur kernel k from (x, y)



Our Work
Find Fand G

? blur kernel
space

o




Our Work
Find Fand G

Blind Deblurring

Blurry face
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Our Work
Find Fand G

Blind Deblurring  Blur Synthesis
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Kernel Encoding <)
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' Skip connections *\
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K F and G are implemented \ : :
by two neural networks. ' Encoder Decoder !
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* For(x,y) "~ Pgaalx, y). Fand G are : :
jointly optimized by minimizing the \ !

objective function: N -’
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Kernel Encoding

/F and G are implemented

by two neural networks.

* For(x,y) ™ Pgata(x, y). Fand G are
jointly optimized by minimizing the
objective function:

Euy [p(y:.

Qarbonnier Loss

Flz,6(,y)))]

Recon blurry
image
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Generic Image Deblurring

4 N

e Xand k are alternatively optimized by minimizing:

n

Zp(yi, F(zi, G(xi,9:)))

i=
Recon blurry

image
Charbonnier Loss 8
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Generic Image Deblurring

Algorithm 1 Blind image deblurring

Input: blurry image y
Output: sharp image x
1: Sample 2z, ~ N(0,1)
/ \ 2: Randomly initialize 6., of G

3: while 6, has not converged do
e Xand k are alternatively optimized * Sample 2 .N.N(.O’ D) k
by minimizing: 5 Randomly initialize 0, of ng
y minimizing: 6: while 6, has not converged do
mn
7: g < 6£(9$, Hk)/agk-
Zp(yza}_(ajug(xw%))) 8: O, < 0, +ax ADAM (04, g1.)
i=1 9: end while
- 100 gy« OL(0,01)/90,

11: Op < 0, +ax ADAM (0, g.)
12: end while
13: * = GQI (Zm)




Generic Image Deblurring
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X and k are alternatively optimized
by minimizing:

Zp(yi,}—(a:i,g(xi,yi)))
%

1

Algorithm 1 Blind image deblurring

Input: blurry image y
Output: sharp image x
1: Sample z, ~ N (0, 1)
2: Randomly initialize 6., of G
3: while 6, has not converged do
4. Sample 2, ~ N(0,1)
5:  Randomly initialize 6 of G,
6: while 6, has not converged do
7: g < 6£(9$, Hk)/agk-
8: 0, < 0, +Oz*ADAM(9k,gk)
9: end while
10: gz < OL(0y,01)/00,
11: Op < 0, +ax ADAM (0., 9:)
12: end while
13: x = Gy, (22)
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Generic Image Deblurring

Algorithm 1 Blind image deblurring

Input: blurry image y
Output: sharp image x

1: Sample 2z, ~ N(0, )
e N\ . Randomly initialize 6, of G

3: while 6, has not converged do
« Xand k are alternatively optimized 4 Sample 2 ,N,N(,O’ 1) N
by minimizing: 5 Randomly initialize 6y, of G,
' 6: while 6, has not converged do
2 20, \\a/2 -
ply, F(x, k)) + \Allk\lz + (9, () + g, () | I g < OL(0,01) /00,
Y 8 0, < 01 +ax ADAM (0, gi)
O end while
K / oo gz < OL(0y,01)/00,
11: Oy <0, +ax ADAM(0,,9.)

12: end while
13: x = Gy, (22)




Generic Image Deblurring
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* Deep Image Prior:
* Replacexby Gj
* Replacekby Gj
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X and k are alternatively optimized

by minimizing:

ply, F (@, k) + Allkllz + (g5 (@) + 63(2))
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Algorithm 1 Blind image deblurring

Input: blurry image y
Output: sharp image x
1: Sample z, ~ N (0, 1)
2: Randomly initialize 6., of G
3: while 6, has not converged do
4. Sample 2, ~ N(0,1)
5:  Randomly initialize 6 of G,
6: while 6, has not converged do
7: g < 6£(9$, Hk)/agk-
8: 0, < 0, +Oz*ADAM(9k,gk)
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Domain-specific Image Deblurring

Pre-trained

StyleGAN

2* k" = argmax p (F(Gae(2). k). ) + Re(2) + Ru(k)
| Regularization term



Blur Synthesis
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Experimental Results — Kernel Encoding

Kernel 8

(X1, Y1) (X2, ¥2)
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Experimental Results — Kernel Encoding

kernel 1 kernel 2 kernel 3  kernel 4

PSNR (db) 49 .48 51.93 52.06 53.74
kernel 5 kernel 6 kernel 7 kernel &

PSNR (db) 4991 49.49 5143 50.38

Blur transferring performance on Levin dataset



Experimental Results — Kernel Encoding

Dataset
Training data REDS GOPRO
Original 30.70 30.20
Blur-swapped 29.43 28.49

SRN performance when training on blur-
swapped dataset



Experimental Results — Generic Image Deblurring &)

Blur SeIfDequr DeblurGANv2

SRN
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Blur SeIfDequr DeblurGANv2




Experimental Results — Blind Image Deblurring <)

DeblurGANv2 DeblurGANv2

SRN imgaug SRN REDS




Experimental Results — Blind Image Deblurring <)

Blur SelfDeblyr  DEPIrGANVZ DEbUrGANVZ - oo iaaug SRN REDS ours
imgaug REDS 7




Experimental Results — Blur Synthesis <)

Synthesized blur




Experimental Results — Blur Synthesis

Source sharp Source blur

Synthesized blur
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Summary

 We have proposed a method to encode the blur kernel
space of a deblurring dataset.

* We have proposed some applications of the blur
kernel space.

https://github.com/VinAIResearch/blu https://www.vinai.io/publication-
r-kernel-space-exploring posts/explore-image-deblurring-via-
encoded-blur-kernel-space/



