

Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images

Long-Nhat Ho Anh Tuan Tran^{1,2} VinAl Research¹

VinUniversity²

Quynh Phung¹ Minh Hoai^{1,3} Stony Brook Univeristy³

Motivation

Problem

Recover *3D structure* (shape + texture) of an object of a *known category* in a *single image*

✗ III-posed problem

Human is very good at this task via learning 3D shape prior

Problem

How to learn the 3D shape prior?

- Supervised
 - ✓ Require massive 3D data \rightarrow hard to acquire
- > Unsupervised
 - ✓ Observe 2D images of the same category

Previous approach – LeSym*

Only symmetric objects !!!

* S. Wu, C. Rupprecht, and A. Vedaldi. "Unsupervised learning of probably symmetric deformable 3d objects from images in the wild". In *CVPR 2020.*

Our solution?

- Many datasets have multiple images for each object instance
 - Cover symmetric objects

Multi-view

Collection

Shape consistency

Video

Learning from Multi-Image Datasets - LeMul

LeMul System

LeMul system

*Note that we omit the confidence maps in this figure for simplicity

LeMul system

$$\mathbb{L}^{al}(\mathbf{I}, a, d) = \frac{1}{|\Omega|} \sum_{p \in \Omega} \left\| \sum_{p_k \in \mathcal{N}(p)} w_k^c w_k^d (a(p) - a(p_k)) \right\|^2$$

Where:

N(p): the neighbors of a pixel

 w_k^c : the intensity weighting term

 w_k^d : the depth weighting term

single-image, symmetric objects

multi-view dataset

Cat Faces (single + symmetric)

Multi-PIE (multi-view)

CASIA-WebFace (image collection)

CASIA-WebFace (image collection)

Input

LeMul (CASIA)

✓ Better surface reconstruction on BFM
✓ Better voted via user surveys on all datasets

No	Baseline	$\text{SIDE}(\text{x}10^{-2}) \downarrow$	$MAD(deg.) \downarrow$
(1)	Supervised	0.410 ± 0.103	10.78 ± 1.01
(2)	Const. null depth	2.723 ± 0.371	43.34 ± 2.25
(3)	Average G.T. depth	1.990 ± 0.556	23.26 ± 2.85
(4)	LeSym	$0.793 {\pm} 0.140$	16.51 ± 1.56
(5)	LeMul (proposed)	0.834 ± 0.169	$15.49 {\pm} 1.50$

BFM results comparison with baselines.

THANK YOU

https://github.com/VinAlResearch/LeMul